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 6.1 An Introduction to Meta-Interpreters: Prolog in Prolog 

Meta 
Interpreters 

In both Lisp and Prolog, it is easy to write programs that manipulate 
expressions written in that language’s syntax. We call such programs meta-
interpreters. In an example we will explore throughout this book, an expert 
system shell interprets a set of rules and facts that describe a particular 
problem. Although the rules of a problem situation are written in the 
syntax of the underlying language, the meta-interpreter redefines their 
semantics. The “tools” for supporting the design of a meta-interpreter in 
Prolog were the meta predicates presented in Chapter 5. 

In this chapter we present three examples of meta-interpreters. As our first 
example, we define the semantics of pure Prolog using the Prolog language 
itself. This is not only an elegant statement of Prolog semantics, but also 
will serve as a starting point for more complex meta-interpreters.  solve 
takes as its argument a Prolog goal and processes it according to the 
semantics of Prolog: 

solve(true) :-!. 

solve(not A) :- not(solve(A)). 

solve((A, B)) :-!, solve(A), solve(B). 

solve(A) :- clause(A, B), solve(B). 
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The first solve predicate checks to see if its argument is a fact and true. 
The second checks to determine whether the argument of solve is false 
and makes the appropriate change. The third solve predicate sees if the 
argument of the solve predicate is the and of two predicates and then 
calls solve on the first followed by calling solve on the second. 
Actually, the third solve can handle any number of anded goals, calling 
solve on the first and then calling solve on the set of anded 
remaining goals. Finally, when the three previous attempts have failed, 
solve, using the clause metapredicate, finds a rule whose head is the 
goal and then calls solve on the body of that rule. solve implements 
the same left-to-right, depth-first, goal-directed search as the built-in 
Prolog interpreter.  

If we assume the following simple set of assertions, 
p(X, Y) :- q(X), r(Y). 

q(X) :- s(X). 

r(X) :- t(X). 

s(a). 

t(b). 

t(c). 

solve has the behavior we would expect of Prolog: 
?- solve(p(a, b)). 

Yes 

?- solve(p(X, Y)). 

X = a, Y = b; 

X = a, Y = c; 

No 

?- solve(p(f, g)). 

no 

The ability easily to write meta-interpreters for a language has certain 
theoretical advantages. For example, McCarthy wrote a simple Lisp meta-
interpreter as part of a proof that the Lisp language is Turing complete 
(McCarthy 1960). From a more practical standpoint, we can use meta-
interpreters to extend or modify the semantics of the underlying language 
to better fit our application. This is the programming methodology of meta-
linguistic abstraction, the creation of a high-level language that is designed to 
help solve a specific problem. 

For example, we can extend the standard Prolog semantics so as to ask the 
user about the truth-value of any goal that does not succeed (using the four 
solve predicates above) in the knowledge base. We do this by adding the 
following clauses to the end of the previous definitions of solve: 

solve(A) :- askuser(A). 

askuser(A) :- write(A), 

     write(’? Enter true if the goal is true, false     
          otherwise’), nl. 

     read(true). 
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Because we add this definition to the end of the other solve rules, it is 
called only if all of these earlier solve rules fail. solve then calls 
askuser to query the user for the truth value of the goal (A). askuser 
prints the goal and instructions for answering. read(true) attempts to 
unify the user’s input with the term true, failing if the user enters false 
(or anything that does not unify with true). In this way we have changed 
the semantics of solve and extended the behavior of Prolog. An 
example, using the simple knowledge base defined above, illustrates the 
behavior of the augmented definition of solve: 

?- solve(p(f, g)). 

s(f)? Enter true if the goal is true, false 
otherwise 

true. 

t(g)? Enter true if the goal is true, false 
otherwise 

true. 

yes 

Another extension to the meta-interpreter allows it to respond to “why” 
queries. When the interpreter asks the user a question, the user can 
respond with why; the appropriate response to this query is the current 
rule that the program is trying to solve. We implement this by storing the 
stack of rules in the current line of reasoning as the second parameter to 
solve. Whenever solve calls clause to solve a goal, it places the 
selected rule on the stack. Thus, the rule stack records the chain of rules 
from the top-level goal to the current subgoal. 

Because the user may now enter two valid responses to a query, askuser 
calls respond, which either succeeds if the user enters true (as before) 
or prints the top rule on the stack if the user enters why. respond and 
askuser are mutually recursive, so that after printing the answer to a 
why query, respond calls askuser to query the user about the goal 
again. Note, however, that respond calls askuser with the tail of the 
rule stack. Thus, a series of why queries will simply chain back up the rule 
stack until the stack is empty – the search is at the root node of the tree – 
letting the user trace the entire line of reasoning. 

solve(true, _) :-!. 

solve(not(A), Rules) :- not(solve(A, Rules)). 

solve((A, B), Rules) :- !,  

        solve(A, Rules), solve(B, Rules). 

   solve(A, Rules) :-  

        clause(A, B), solve(B, [(A :- B) | Rules]). 

   solve(A, Rules) :- askuser(A, Rules). 

    askuser(A, Rules) :-  

          write(A), 

        write(’? Enter true if goal is true,  
          false otherwise’),nl, 

     read(Answer), respond(Answer, A, Rules). 
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respond(true, _, _). 

respond(why, A, [Rule | Rules]) :- 

     write(Rule), nl,  

     askuser(A, Rules). 

respond(why, A, [ ]) :- askuser(A, [ ]). 

For example, suppose we run solve on the simple database introduced 
earlier in the section:  

?- solve(p(f, g), [ ]). 

s(f)? Enter true if goal is true, false otherwise 

why. 

q(f) :- s(f) 

s(f)? Enter true if goal is true, false otherwise 

why. 

p(f,g) :- (q(f), r(g)) 

s(f)? Enter true if goal is true, false otherwise 

true. 

t(g)? Enter true if goal is true, false otherwise 

true. 

yes 

Note how successive why queries actually trace back up the full line of 
reasoning. 

A further useful extension to the solve predicate constructs a proof tree 
for any successful goal. The ability to build proof trees provides expert 
system shells with the means of responding to “how” queries; it is also 
important to any algorithm, such as explanation-based learning (Chapter 7), 
that reasons about the results of a problem solver. 

We may modify the pure Prolog interpreter to build a proof tree recursively 
for a goal as it solves that goal. In the definition that follows, the proof is 
returned as the second parameter of the solve predicate. The proof of 
the atom true is that atom; this halts the recursion. In solving a goal A 
using a rule A :- B, we construct the proof of B and return the structure 
(A :- ProofB). In solving a conjunction of two goals, A and B, we 
simply conjoin the proof trees for each goal: (ProofA, ProofB). 

The definition of a meta-interpreter that supports the construction of the 
proof trees is: 

solve(true, true) :-!. 

solve(not(A), not ProofA) :-  

     not(solve(A, ProofA)). 

solve((A, B),(ProofA, ProofB)) :-  

     solve(A, ProofA), solve(B, ProofB). 

solve(A, (A :- ProofB)) :-  

     clause(A, B), solve(B, ProofB). 

solve(A, (A :- given)) :-  

askuser(A). 
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   askuser(A, Proof) :-  

        write(A), 

        write(’enter true if goal is true,  
          false otherwise’),  
     read(true). 

Running this on our simple database gives the results: 
?- solve(p(a, b), Proof). 

Proof = p(a, b) :- 
    ((q(a) :- 
     (s(a) :- 
      true)), 
    r(b) :- 
     (t(b) :- 
      true))) 

In the next section, we use these same techniques to implement an expert 
system shell. exshell uses a knowledge base in the form of rules to 
solve problems. It asks the user for needed information, keeps a record of 
case-specific data, responds to how and why queries, and implements the 
Stanford certainty factor algebra (Luger 2009, Section 9.2.1). Although this 
program, exshell, is much more complex than the Prolog meta-
interpreters discussed above, it is just an extension of this methodology. Its 
heart is a solve predicate implementing a back-chaining search. 

 6.2 Introduction: Logic-Based Representation A Shell for a Rule-Based Expert System 

          EXSHELL In this section we present the key predicates used in the design of an 
interpreter for a goal-driven, rule-based expert system. At the end of this 
section, we demonstrate the performance of exshell using an 
automotive diagnostic knowledge base. If the reader would prefer to read 
through this trace before examining exshell’s key predicates, we 
encourage looking ahead. 

An exshell knowledge base consists of rules and specifications of 
queries that can be made to the user. Rules are represented using a two-
parameter rule predicate of the form rule(R, CF). The first 
parameter is an assertion to the knowledge base, written using standard 
Prolog syntax. Assertions may be Prolog rules, of the form (G :- P), 
where G is the head of the rule and P is the conjunctive pattern under 
which G is true. The first argument to the rule predicate may also be a 
Prolog fact. CF is the confidence the designer has in the rule’s conclusions. 
exshell implements the certainty factor algebra of MYCIN, (Luger 
2009, Section 9.2.1), and we include a brief overview of the Stanford 
algebra here. Certainty factors (CFs) range from +100, a fact that is true, to 
–100, something that is known to be false. If the CF is around 0, the truth 
value is unknown. Typical rules from a knowledge base for diagnosing 
automotive failures are: 

rule((bad_component(starter) :-  

     (bad_system(starter_system), 
          lights(come_on))), 50). 

rule(fix(starter, ‘replace starter’),100). 
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Thts first rule states that if the bad system is shown to be the starter system 
and the lights come on, then conclude that the bad component is the 
starter, with a certainty of 50. Because this rule contains the symbol :- it 
must be surrounded by parentheses. The second rule asserts the fact that 
we may fix a broken starter by replacing it, with a certainty factor of 100. 
exshell uses the rule predicate to retrieve those rules that conclude 
about a given goal, just as the simpler versions of solve in Section 6.1 
used the built-in clause predicate to retrieve rules from the global 
Prolog database. 

exshell supports user queries for unknown data. However, because we 
do not want the interpreter to ask for every unsolved goal, we allow the 
programmer to specify exactly what information may be obtained from 
asking. We do this with the askable predicate: 
 askable(car_starts). 

Here askable specifies that the interpreter may ask the user for the truth 
of the car_starts goal when nothing is known or can be concluded 
about that goal. 

In addition to the programmer-defined knowledge base of rules and 
askables, exshell maintains its own record of case-specific data. 
Because the shell asks the user for information, it needs to remember what 
it has been told; this prevents the program from asking the same question 
twice during a consultation (decidedly non-expert behavior!). 

The heart of the exshell meta-interpreter is a predicate of four 
arguments called, surprisingly, solve. The first of these arguments is the 
goal to be solved. On successfully solving the goal, exshell binds the 
second argument to the (accumulated) confidence in the goal as computed 
from the knowledge base. The third argument is the rule stack, used in 
responding to why queries, and the fourth is the cutoff threshold for the 
certainty factor algebra. This allows pruning of the search space if the 
confidence falls below a specified threshold. 

In attempting to satisfy a goal, G, solve first tries to match G with any 
facts that it already has obtained from the user. We represent known facts 
using the two-parameter known(A, CF) predicate. For example, 
known(car_starts, 85) indicates that the user has already told us 
that the car starts, with a confidence of 85. If the goal is unknown, solve 
attempts to solve the goal using its knowledge base. It handles the negation 
of a goal by solving the goal and multiplying the confidence in that goal by 
–1. It solves conjunctive goals in left-to-right order. If G is a positive literal, 
solve tries any rule whose head matches G. If this fails, solve queries the 
user. On obtaining the user’s confidence in a goal, solve asserts this 
information to the database using a known predicate. 

% Case 1: truth value of goal is already known 

solve(Goal, CF, _, Threshold) : 

     known(Goal, CF), !, 

     above_threshold(CF, Threshold).  
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% Case 2: negated goal 

solve(not(Goal), CF, Rules, Threshold) :-!, 
     invert_threshold(Threshold, New_threshold), 

     solve(Goal, CF_goal, Rules, New_threshold), 
     negate_cf(CF_goal, CF). 

% Case 3: conjunctive goals 
solve((Goal_1,Goal_2), CF, Rules, Threshold) :- !, 

     solve(Goal_1, CF_1, Rules, Threshold), 

     above_threshold(CF_1, Threshold), 
     solve(Goal_2, CF_2, Rules, Threshold), 

     above_threshold(CF_2, Threshold), 
     and_cf(CF_1, CF_2, CF).  

% Case 4: back chain on a rule in knowledge base 

solve(Goal, CF, Rules, Threshold) :- 
     rule((Goal :- (Premise)), CF_rule), 

     solve(Premise, CF_premise, [rule((Goal :- 
            Premise), CF_rule)|Rules], Threshold), 

     rule_cf(CF_rule, CF_premise, CF),      
     above_threshold(CF, Threshold). 

% Case 5: fact assertion in knowledge base 

solve(Goal, CF, _, Threshold) :- 
     rule(Goal, CF), 

     above_threshold(CF, Threshold). 
% Case 6: ask user 

solve(Goal, CF, Rules, Threshold) :- 

     askable(Goal), 
     askuser(Goal, CF, Rules), !, 

     assert(known(Goal, CF)), 
     above_threshold(CF, Threshold). 

We start a consultation using a two-argument version of solve. The first 
argument is the top-level goal in the knowledge base, and the second is a 
variable that will be bound to the confidence in the goal’s truth as inferred 
from the knowledge base. solve/2 (solve with arity of 2) prints a set 
of instructions to the user, calls retractall(known(_,_)) to clean 
up any residual information from previous uses of exshell, and calls 
solve/4 initialized with appropriate values: 

solve(Goal, CF) :- 

     print_instructions, 

     retractall(known(_, _)), 

     solve(Goal, CF, [ ], 20).       

print_instructions gives allowable responses to an exshell query: 
       print_instructions :- nl, 
         write(’Response must be either:’), nl, 

         write(’Confidence in truth of query.’), nl, 
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         write(’A number between –100 and 100.’), nl, 

         write(’why.’), nl, 

         write(’how(X), where X is a goal’), nl. 

The next set of predicates computes certainty factors. Again, exshell 
uses a form of the Stanford certainty factor algebra. Briefly, the certainty 
factor of the and of two goals is the minimum of the certainty factors of 
the individual goals; the certainty factor of the negation of a fact is –1 times 
the certainty of that fact. Confidence in a fact concluded using a rule equals 
the certainty of the premise multiplied by the certainty factor in the rule. 
above_threshold determines whether the value of a certainty factor 
is too low given a particular threshold. exshell uses the 
threshold value to prune a goal if its certainty gets too low.  

Note that we define above_threshold separately for negative and 
positive values of the threshold. A positive threshold enables us to 
prune if the goal’s confidence is less than threshold. However, a 
negative threshold indicates that we are trying to prove a goal false. 
Thus for negative goals, we prune search if the value of the goal’s 
confidence is greater than the threshold. invert_threshold is 
called to multiply threshold by –1. 

and_cf(A, B, A) :- A = < B. 

and_cf(A, B, B) :- B < A. 

negate_cf(CF, Negated_CF) :- 

     Negated_CF is - 1 * CF. 

rule_cf(CF_rule, CF_premise,CF) :- 

     CF is (CF_rule * CF_premise/100). 

above_threshold(CF, T) :- 

     T > = 0, CF >= T. 

above_threshold(CF, T) :- 

     T < 0, CF =< T. 

invert_threshold(Threshold, New_threshold) :- 

     New_threshold is –1 * Threshold. 

askuser writes out a query and reads the user’s Answer; the respond 
predicates take the appropriate action for each user input. 

askuser(Goal, CF, Rules) :-   

     nl, write(’User query:’), 

     write(Goal), nl, write(’?’), 

     read(Answer), 

     respond(Answer, Goal, CF, Rules). 

The user can respond to this query with a CF between 100 and –100, for 
confidence in the goal’s truth, why to ask why the question was asked, or 
how(X) to inquire how result X was established. The response to why is 
the rule currently on top of the rule stack. As with our implementation of 
Prolog in Prolog in Section 6.1, successive why queries will pop back up 
the rule stack, enabling the user to reconstruct the entire line of reasoning. 
If the user answer matches how(X), respond calls build_proof to 
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build a proof tree for X and write_proof to print that proof in a 
readable form. There is a “catchall” respond for unknown input values. 

% Case 1: user enters a valid confidence factor 

respond(CF, _, CF, _) :- 

     number(CF), 

     CF =< 100, CF >= –100. 

% Case 2: user enters a why query 

respond(why, Goal, CF, [Rule | Rules]) :- 

     write_rule(Rule), 

     askuser(Goal, CF, Rules). 

respond(why, Goal, CF, [ ]) :- 

     write(’Back to top of rule stack.’), 

     askuser(Goal, CF, [ ]). 

% Case 3: user enters a how query. Build/print proof 

respond(how(X), Goal, CF, Rules) :- 

     build_proof(X, CF_X, Proof), !, 

     write(X), write(’concluded with certainty‘),  

     write(CF_X), nl, nl, 

        write(’The proof is ‘), nl, nl, 

        write_proof(Proof, 0), nl, nl, 

        askuser(Goal, CF, Rules). 

% User enters how query, could not build proof 

respond(how(X), Goal, CF, Rules) :- 

     write(’The truth of ‘), write(X), nl, 

     write(’is not yet known.’), nl, 

     askuser(Goal, CF, Rules). 

% Case 4: User presents unrecognized input 

   respond(_, Goal, CF, Rules) :- 

        write(’Unrecognized response.’), nl, 

        askuser(Goal, CF, Rules). 

build_proof is parallel to solve/4, but build_proof does not 
ask the user for unknowns, as these were already saved as part of the case-
specific data. build_proof constructs a proof tree as it proves the goal. 

build_proof(Goal, CF, (Goal, CF :- given)) :- 

     known(Goal, CF), !. 

build_proof(not Goal, CF, not Proof) :- !, 

     build_proof(Goal, CF_goal, Proof), 

     negate_cf(CF_goal, CF). 

build_proof((Goal_1, Goal_2), CF,  
          (Proof_1, Proof_2)) :- !, 

     build_proof(Goal_1, CF_1, Proof_1), 

     build_proof(Goal_2, CF_2, Proof_2), 

     and_cf(CF_1, CF_2, CF). 
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build_proof(Goal, CF, (Goal, CF :- Proof)) :- 

     rule((Goal :- Premise), CF_rule), 

     build_proof(Premise, CF_premise, Proof), 

     rule_cf(CF_rule, CF_premise, CF). 

build_proof(Goal, CF, (Goal, CF :- fact)) :- 

     rule(Goal, CF). 

The final predicates create a user interface. The interface requires the bulk 
of the code! First, we define a predicate write_rule: 

write_rule(rule((Goal :- (Premise)), CF)) :- 

     write(Goal), write(’:-’), nl, 

     write_premise(Premise), nl, 

     write(’CF = ‘), write(CF), nl. 

write_rule(rule(Goal, CF)) :- 

     write(Goal), nl, write(’CF = ‘), write(CF), nl. 

write_premise writes the conjuncts of a rule premise: 
write_premise((Premise_1, Premise_2)) :- !, 

     write_premise(Premise_1), 

     write_premise(Premise_2). 

write_premise(not Premise) :- !, 

     write(’’), write(not), write(’’),  

        write(Premise), nl. 

   write_premise(Premise) :- 

        write(’’), write(Premise), nl. 

write_proof prints proof, using indents to show the tree’s structure: 
write_proof((Goal, CF :- given), Level) :-  

     indent(Level), write(Goal), write(’ CF= ‘),   

     write(CF),write(’ given by the user’), nl, !. 

write_proof((Goal, CF :- fact), Level) :- 

     indent(Level), write(Goal), write(’ CF = ‘),   

     write(CF), 

     write(’ was a fact of knowledge base’), nl, !. 

write_proof((Goal, CF :- Proof), Level) :- 

     indent(Level), write(Goal), write(’ CF = ‘),       

     write(CF), write(’ :-’), nl, New_level is  
          Level + 1,write_proof(Proof,New_level), !. 
write_proof(not Proof, Level) :- 
     indent(Level), write((not)), nl, 

     New_level is Level + 1,  

     write_proof(Proof, New_level), !. 

write_proof((Proof_1, Proof_2),Level) :- 

     write_proof(Proof_1, Level), 

     write_proof(Proof_2, Level), !. 
 
indent(0). 
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indent(l) :- 
     write(’’), l_new is l – 1, indent(l_new). 

As an illustration of the behavior of exshell, consider the following 
sample knowledge base for diagnosing car problems. The top-level goal is 
fix/1. The knowledge base decomposes the problem solution into finding 
the bad_system, finding the bad_component within that system, 
and finally linking the diagnosis to Advice for its solution. Note that the 
knowledge base is incomplete; there are sets of symptoms that it cannot 
diagnose. In this case, exshell simply fails. Extending the knowledge 
base to some of these cases and adding a rule that succeeds if all other rules 
fail are interesting challenges and left as exercises. The following set of 
rules is segmented to show reasoning on each level of the search tree 
presented in Figure 6.1. The top segment, rule((fix(Advice), is at 
the root of the tree: 

rule((fix(Advice) :-              % Top-level query 

     (bad_component(X), fix(X,Advice))), 100). 

rule((bad_component(starter) :- 

     (bad_system(starter_system),  
          lights(come_on))), 50).   

rule((bad_component(battery) :- 

     (bad_system(starter_system), 
          not lights(come_on))), 90). 

rule((bad_component(timing) :- 

     (bad_system(ignition_system),  
          not tuned_recently)), 80). 

rule((bad_component(plugs) :- 

     (bad_system(ignition_system),  
          plugs(dirty))), 90). 
rule((bad_component(ignition_wires) :- 

     (bad_system(ignition_system),  
          not plugs(dirty), tuned_recently)), 80). 
rule((bad_system(starter_system) :- 

     (not car_starts, not turns_over)), 90). 

rule((bad_system(ignition_system) :- 

     (not car_starts, turns_over, gas_in_carb)),80).  

rule((bad_system(ignition_system) :- 

     (runs(rough), gas_in_carb)), 80). 

   rule((bad_system(ignition_system) :- 

        (car_starts, runs(dies), gas_in_carb)), 60). 

 
rule(fix(starter, ‘replace starter’), 100). 

rule(fix(battery, ‘replace/recharge battery’), 100). 

rule(fix(timing, ‘get the timing adjusted’), 100). 

rule(fix(plugs, ‘replace spark plugs’), 100). 

rule(fix(ignition_wires, ‘check ignition’),100). 
    
   askable(car_starts).      % May ask user about goal 
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askable(turns_over). 

askable(lights(_)). 

askable(runs(_)). 

askable(gas_in_carb). 

askable(tuned_recently). 

askable(plugs(_)). 

Next we demonstrate, exshell using this knowledge base. Figure 6.1 
presents the trace and the search space: solid lines are searched, dotted 
lines are not searched, and bold lines indicate the solution. 

?- solve(fix(X), CF). 

Response must be either: 
 A confidence in the truth of the query. 
 This is a number between –100 and 100. 
 why. 
 how(X), where X is a goal 

User query:car_starts 

? –100. 

User query:turns_over 

? 85. 

User query:gas_in_carb 

? 75. 

User query:tuned_recently 

? –90. 
 X = ‘get the timing adjusted’ CF = 48.0 

We now run the problem again using how and why queries. Compare the 
responses with the corresponding subtrees and search paths of Figure 6.1: 

?- solve(fix(X), CF). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. The graph searched in an automotive diagnosis consultation; 
dashed lines are branches not examined, bold lines indicate the solution. 
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Response must be either: 
  A confidence in the truth of the query. 
  This is a number between –100 and 100. 
  why. 
  how(X), where X is a goal 
User query:car_starts 

? –100. 
User query:turns_over 
? why. 
bad_system(starter_system):- 
     not car_starts 
     not turns_over 
     CF = 90 
User query:turns_over 

? why. 

bad_component(starter):- 
     bad_system(starter_system) 
     lights(come_on) 
     CF = 50 
User query:turns_over  

? why. 

fix(_0):- 
     bad_component(starter) 
     fix(starter,_0) 
     CF = 100 
User query:turns_over  

? why. 

Back to top of rule stack. 
User query:turns_over  

? 85. 

User query:gas_in_carb  

? 75. 
User query:tuned_recently 

? why. 

bad_component(timing):- 
     bad_system(ignition_system) 
     not tuned_recently 
     CF = 80 

User query:tuned_recently 

? how(bad_system(ignition_system)). 

bad_system(ignition_system) was concluded with      
          certainty 60.0 
The proof is 
bad_system(ignition_system) CF= 60.0 :- 
     not car_starts CF = –100 was given by the user 
  turns_over CF = 85 was given by the user 
  gas_in_carb CF = 75 was given by the user 

User query:tuned_recently  

? –90.  

X = ‘get the timing adjusted’ CF = 48.0 
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 6.3 Introduction: Logic-Based Representation A Prolog Planner 

 For the third meta-interpreter of Chapter 6 we present a predicate calculus-
based planning algorithm. In many ways this approach to planning is 
similar to early work in planning at SRI-International (Fikes and Nilsson 
1971, Fikes et al. 1972). Our planner is predicate calculus based in that the 
PC representation is used to describe both the states of the planning world 
(the state descriptions) as well as the rules for changing the state of the 
world. In this section we create a Prolog version of that algorithm. 

We represent the states of the world, including the start and goal, as 
lists of predicates that have interpretations as states of the world. Thus, the 
start and goal states are each described as a list of predicates: 

start = [handempty, ontable(b), ontable(c), on(a,b),  
          clear(c), clear(a)] 
 
goal = [handempty, ontable(a), ontable(b), on(c,b),  
          clear(a), clear(c)] 

These states are seen, with a portion of the search space, in Figure 6.2. 

The moves in this blocks world are described using an add and delete list. 
The add and delete list describes how the list of predicates describing a 
new state of the solution is created from the list describing the previous 
state: some predicates are added to the state list and others are deleted. The 
move predicates for state change have three arguments. First is the move 
predicate name with its arguments. The second argument is the list of 
preconditions: the predicates that must be true of the description of the 
present state of the world for the move rule to be applied to that state. 
The third argument is the list containing the add and delete predicates: the 
predicates that are added to and/or deleted from the state of the world to 
create the new state of the world that results from applying the move rule. 
Notice how useful the ADT set operators of union, intersection, set 
difference, etc., are in manipulating the preconditions and the predicates in 
the add and delete list. 

Four of the moves within this blocks world may be described: 
move(pickup(X), [handempty, clear(X), on(X,Y)], 
   [del(handempty), del(clear(X)), del(on(X,Y)), 
        add(clear(Y)), add(holding(X))]). 
move(pickup(X), [handempty, clear(X), ontable(X)], 
     [del(handempty), del(clear(X)),  

        del(ontable(X)), add(holding(X))]). 

move(putdown(X), [holding(X)], 
     [del(holding(X)), add(ontable(X)),     
        add(clear(X)), add(handempty)]). 

move(stack(X,Y), [holding(X), clear(Y)], 
     [del(holding(X)), del(clear(Y)),             
        add(handempty),add(on(X,Y)),add(clear(X))]). 
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Figure 6.2. The start and goal states along with the initial portion of the 
search  space for the blocks world planner. 

 
Finally, we present the recursive controller for the plan generation. The 
first plan predicate gives the successful termination conditions (goal state 
description) for the plan when the Goal is produced. The final plan 
predicate states that after exhaustive search, no plan is possible. The 
recursive plan generator: 

1. Searches for a move relationship. 

2. Checks, using the subset operator, whether the state’s 
Preconditions are met. 

3. The change_state predicate produces a new 
Child_state using the add and delete list. 
member_stack makes sure the new state has not been visited 
before. 

4. The stack operator pushes the new Child_state onto 
the New_move_stack. 
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5. The stack operator pushes the original Name state onto the 
New_been_stack. 

6. The recursive plan call searches for the next state using the 
Child_state and an updated New_move_stack and 
Been_stack. 

A number of supporting utilities, built on the stack and set ADTs of 
Section 3.3 are included. Of course, the search being stack-based, is depth-
first with backtracking and terminates with the first path found to a goal. It 
is left as an exercise to build other search strategies for planning, e.g., 
breadth-first and best-first planners. 

plan(State, Goal, _, Move_stack) :- 

     equal_set(State, Goal), 

     write(’moves are’), nl, 

     reverse_print_stack(Move_stack).  

plan(State, Goal, Been_stack, Move_stack) :- 

     move(Name, Preconditions, Actions), 

     conditions_met(Preconditions, State), 

     change_state(State, Actions, Child_state), 

     not(member_stack(Child_state, Been_stack)), 

     stack(Name, Been_stack, New_been_stack), 

     stack(Child_state, Move_stack, New_move_stack), 

     plan(Child_state, Goal, New_been_stack,  
          New_move_stack), !. 

plan(_, _, _) :-  

     write(’No plan possible with these moves!’).  

conditions_met(P, S) :- 

     subset(P, S). 

change_state(S, [ ], S). 

change_state(S, [add(P) | T], S_new) :- 

     change_state(S, T, S2), 

     add_if_not_in_set(P, S2, S_new), !. 

change_state(S, [del(P) | T], S_new) :- 

     change_state(S, T, S2), 

     delete_if_in_set(P, S2, S_new), !. 

    reverse_print_stack(S) :- 

        empty_stack(S). 

   reverse_print_stack(S) :- 

        stack(E, Rest, S), 

        reverse_print_stack(Rest), write(E), nl. 

Finally, we create a go predicate to initialize the arguments for plan, as 
well as a test predicate to demonstrate an easy method to save repeated 
creation of the same input string. 
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go(Start, Goal) :- 

     empty_stack(Move_stack),   

     empty_stack(Been_stack), 

     stack(Start, Been_stack, New_been_stack), 

     plan(Start, Goal, New_been_stack, Move_stack). 
 
test :-   

go( 

     [handempty, ontable(b), ontable(c),  
          on(a,b), clear(c), clear(a)], 

     [handempty, ontable(a), ontable(b), on(c,b),  
          clear(a), clear(c)] 
  ). 

In Chapter 7 we present two machine learning algorithms in Prolog, version 
space search and explanation based learning. 

 Exercises 

 1. Extend the meta-interpreter for Prolog in Prolog (Section 6.1) to include 
or and the cut. 

2. Further complete the rules used with the exshell cars example in the 
text. You might add several new sets of rules for the transmission, cooling 
system, and brakes. 

3. Create a knowledge base for a new domain for the expert system 
exshell. 

4. exshell currently allows the user to respond to queries by entering a 
confidence in the query’s truth, a why query, or a how query. Extend the 
respond predicate to allow the user to answer with y if the query is true, 
n if it is false. These responses correspond to having certainty factors of 
100 and -100. 

5. As currently designed, if exshell cannot solve a goal using the rule base, 
it fails. Extend exshell so if it cannot prove a goal using the rules, and if it 
is not askable, it will call that goal as a Prolog query. Adding this option 
requires changes to both the solve and build_proof predicates. 

6. Add a predicate that that exshell does not just fail if it cannot find a 
solution recommendation. This could be a solve predicate at the very 
end of all solve predicates that prints out some message about the state 
of the problem solving, perhaps by binding X, and linking it to some 
Advice, and then succeeds. This an important consideration, 
guaranteeing that exshell terminates gracefully. 

7. Finish the code for the planner of Section 6.3. Add code for a situation 
that requires a new set of moves and has new objects in the domain, such 
as adding pyramids or spheres that cannot be stacked on. 

8. Add appropriate predicates and ADTs to plan to implement a breadth-
first search controller for the planner of Section 6.3.  
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9. Design a best-first search controller for the planner of Section 6.3. Add 
heuristics to the search of your planning algorithm. Can you specify a 
heuristic that is admissible (Luger 2009, Section 4.3)? 

 


