

69

 6 Three Meta-Interpreters: Prolog in Prolog,
EXSHELL, and a Planner

Chapter

Objectives
Prolog’s meta-predicates used to build three meta-interpreters
 Prolog in Prolog
 An expert system shell: exshell
 A planner in Prolog
The Prolog in Prolog interpreter:
 Left-to-right and depth-first search
 Solves for a goal look first for facts, then rules, then ask user
exshell performed, using a set of solve predicates:
 Goal-driven, depth-first search
 Answers how (rule stack) and why (proof tree)
 Pruned search paths using the Stanford certainty factor algebra
The Prolog planner
 Uses an add and delete list to generate new states
 Performs depth-first and left-to-right search for a plan

Chapter
Contents

6.1 An Introduction to Meta-Interpreters: Prolog in Prolog
6.2 A Shell for a Rule-Based Expert System
6.3 A Prolog Planner

 6.1 An Introduction to Meta-Interpreters: Prolog in Prolog

Meta
Interpreters

In both Lisp and Prolog, it is easy to write programs that manipulate
expressions written in that language’s syntax. We call such programs meta-
interpreters. In an example we will explore throughout this book, an expert
system shell interprets a set of rules and facts that describe a particular
problem. Although the rules of a problem situation are written in the
syntax of the underlying language, the meta-interpreter redefines their
semantics. The “tools” for supporting the design of a meta-interpreter in
Prolog were the meta predicates presented in Chapter 5.

In this chapter we present three examples of meta-interpreters. As our first
example, we define the semantics of pure Prolog using the Prolog language
itself. This is not only an elegant statement of Prolog semantics, but also
will serve as a starting point for more complex meta-interpreters. solve
takes as its argument a Prolog goal and processes it according to the
semantics of Prolog:

solve(true) :-!.

solve(not A) :- not(solve(A)).

solve((A, B)) :-!, solve(A), solve(B).

solve(A) :- clause(A, B), solve(B).

70 Part II: Programming in Prolog

The first solve predicate checks to see if its argument is a fact and true.
The second checks to determine whether the argument of solve is false
and makes the appropriate change. The third solve predicate sees if the
argument of the solve predicate is the and of two predicates and then
calls solve on the first followed by calling solve on the second.
Actually, the third solve can handle any number of anded goals, calling
solve on the first and then calling solve on the set of anded
remaining goals. Finally, when the three previous attempts have failed,
solve, using the clause metapredicate, finds a rule whose head is the
goal and then calls solve on the body of that rule. solve implements
the same left-to-right, depth-first, goal-directed search as the built-in
Prolog interpreter.

If we assume the following simple set of assertions,
p(X, Y) :- q(X), r(Y).

q(X) :- s(X).

r(X) :- t(X).

s(a).

t(b).

t(c).

solve has the behavior we would expect of Prolog:
?- solve(p(a, b)).

Yes

?- solve(p(X, Y)).

X = a, Y = b;

X = a, Y = c;

No

?- solve(p(f, g)).

no

The ability easily to write meta-interpreters for a language has certain
theoretical advantages. For example, McCarthy wrote a simple Lisp meta-
interpreter as part of a proof that the Lisp language is Turing complete
(McCarthy 1960). From a more practical standpoint, we can use meta-
interpreters to extend or modify the semantics of the underlying language
to better fit our application. This is the programming methodology of meta-
linguistic abstraction, the creation of a high-level language that is designed to
help solve a specific problem.

For example, we can extend the standard Prolog semantics so as to ask the
user about the truth-value of any goal that does not succeed (using the four
solve predicates above) in the knowledge base. We do this by adding the
following clauses to the end of the previous definitions of solve:

solve(A) :- askuser(A).

askuser(A) :- write(A),

 write(’? Enter true if the goal is true, false
 otherwise’), nl.

 read(true).

 Chapter 6 Three Meta-Interpreters 71

Because we add this definition to the end of the other solve rules, it is
called only if all of these earlier solve rules fail. solve then calls
askuser to query the user for the truth value of the goal (A). askuser
prints the goal and instructions for answering. read(true) attempts to
unify the user’s input with the term true, failing if the user enters false
(or anything that does not unify with true). In this way we have changed
the semantics of solve and extended the behavior of Prolog. An
example, using the simple knowledge base defined above, illustrates the
behavior of the augmented definition of solve:

?- solve(p(f, g)).

s(f)? Enter true if the goal is true, false
otherwise

true.

t(g)? Enter true if the goal is true, false
otherwise

true.

yes

Another extension to the meta-interpreter allows it to respond to “why”
queries. When the interpreter asks the user a question, the user can
respond with why; the appropriate response to this query is the current
rule that the program is trying to solve. We implement this by storing the
stack of rules in the current line of reasoning as the second parameter to
solve. Whenever solve calls clause to solve a goal, it places the
selected rule on the stack. Thus, the rule stack records the chain of rules
from the top-level goal to the current subgoal.

Because the user may now enter two valid responses to a query, askuser
calls respond, which either succeeds if the user enters true (as before)
or prints the top rule on the stack if the user enters why. respond and
askuser are mutually recursive, so that after printing the answer to a
why query, respond calls askuser to query the user about the goal
again. Note, however, that respond calls askuser with the tail of the
rule stack. Thus, a series of why queries will simply chain back up the rule
stack until the stack is empty – the search is at the root node of the tree –
letting the user trace the entire line of reasoning.

solve(true, _) :-!.

solve(not(A), Rules) :- not(solve(A, Rules)).

solve((A, B), Rules) :- !,

 solve(A, Rules), solve(B, Rules).

 solve(A, Rules) :-

 clause(A, B), solve(B, [(A :- B) | Rules]).

 solve(A, Rules) :- askuser(A, Rules).

 askuser(A, Rules) :-

 write(A),

 write(’? Enter true if goal is true,
 false otherwise’),nl,

 read(Answer), respond(Answer, A, Rules).

72 Part II: Programming in Prolog

respond(true, _, _).

respond(why, A, [Rule | Rules]) :-

 write(Rule), nl,

 askuser(A, Rules).

respond(why, A, []) :- askuser(A, []).

For example, suppose we run solve on the simple database introduced
earlier in the section:

?- solve(p(f, g), []).

s(f)? Enter true if goal is true, false otherwise

why.

q(f) :- s(f)

s(f)? Enter true if goal is true, false otherwise

why.

p(f,g) :- (q(f), r(g))

s(f)? Enter true if goal is true, false otherwise

true.

t(g)? Enter true if goal is true, false otherwise

true.

yes

Note how successive why queries actually trace back up the full line of
reasoning.

A further useful extension to the solve predicate constructs a proof tree
for any successful goal. The ability to build proof trees provides expert
system shells with the means of responding to “how” queries; it is also
important to any algorithm, such as explanation-based learning (Chapter 7),
that reasons about the results of a problem solver.

We may modify the pure Prolog interpreter to build a proof tree recursively
for a goal as it solves that goal. In the definition that follows, the proof is
returned as the second parameter of the solve predicate. The proof of
the atom true is that atom; this halts the recursion. In solving a goal A
using a rule A :- B, we construct the proof of B and return the structure
(A :- ProofB). In solving a conjunction of two goals, A and B, we
simply conjoin the proof trees for each goal: (ProofA, ProofB).

The definition of a meta-interpreter that supports the construction of the
proof trees is:

solve(true, true) :-!.

solve(not(A), not ProofA) :-

 not(solve(A, ProofA)).

solve((A, B),(ProofA, ProofB)) :-

 solve(A, ProofA), solve(B, ProofB).

solve(A, (A :- ProofB)) :-

 clause(A, B), solve(B, ProofB).

solve(A, (A :- given)) :-

askuser(A).

 Chapter 6 Three Meta-Interpreters 73

 askuser(A, Proof) :-

 write(A),

 write(’enter true if goal is true,
 false otherwise’),
 read(true).

Running this on our simple database gives the results:
?- solve(p(a, b), Proof).

Proof = p(a, b) :-
 ((q(a) :-
 (s(a) :-
 true)),
 r(b) :-
 (t(b) :-
 true)))

In the next section, we use these same techniques to implement an expert
system shell. exshell uses a knowledge base in the form of rules to
solve problems. It asks the user for needed information, keeps a record of
case-specific data, responds to how and why queries, and implements the
Stanford certainty factor algebra (Luger 2009, Section 9.2.1). Although this
program, exshell, is much more complex than the Prolog meta-
interpreters discussed above, it is just an extension of this methodology. Its
heart is a solve predicate implementing a back-chaining search.

 6.2 Introduction: Logic-Based Representation A Shell for a Rule-Based Expert System

 EXSHELL In this section we present the key predicates used in the design of an
interpreter for a goal-driven, rule-based expert system. At the end of this
section, we demonstrate the performance of exshell using an
automotive diagnostic knowledge base. If the reader would prefer to read
through this trace before examining exshell’s key predicates, we
encourage looking ahead.

An exshell knowledge base consists of rules and specifications of
queries that can be made to the user. Rules are represented using a two-
parameter rule predicate of the form rule(R, CF). The first
parameter is an assertion to the knowledge base, written using standard
Prolog syntax. Assertions may be Prolog rules, of the form (G :- P),
where G is the head of the rule and P is the conjunctive pattern under
which G is true. The first argument to the rule predicate may also be a
Prolog fact. CF is the confidence the designer has in the rule’s conclusions.
exshell implements the certainty factor algebra of MYCIN, (Luger
2009, Section 9.2.1), and we include a brief overview of the Stanford
algebra here. Certainty factors (CFs) range from +100, a fact that is true, to
–100, something that is known to be false. If the CF is around 0, the truth
value is unknown. Typical rules from a knowledge base for diagnosing
automotive failures are:

rule((bad_component(starter) :-

 (bad_system(starter_system),
 lights(come_on))), 50).

rule(fix(starter, ‘replace starter’),100).

74 Part II: Programming in Prolog

Thts first rule states that if the bad system is shown to be the starter system
and the lights come on, then conclude that the bad component is the
starter, with a certainty of 50. Because this rule contains the symbol :- it
must be surrounded by parentheses. The second rule asserts the fact that
we may fix a broken starter by replacing it, with a certainty factor of 100.
exshell uses the rule predicate to retrieve those rules that conclude
about a given goal, just as the simpler versions of solve in Section 6.1
used the built-in clause predicate to retrieve rules from the global
Prolog database.

exshell supports user queries for unknown data. However, because we
do not want the interpreter to ask for every unsolved goal, we allow the
programmer to specify exactly what information may be obtained from
asking. We do this with the askable predicate:
 askable(car_starts).

Here askable specifies that the interpreter may ask the user for the truth
of the car_starts goal when nothing is known or can be concluded
about that goal.

In addition to the programmer-defined knowledge base of rules and
askables, exshell maintains its own record of case-specific data.
Because the shell asks the user for information, it needs to remember what
it has been told; this prevents the program from asking the same question
twice during a consultation (decidedly non-expert behavior!).

The heart of the exshell meta-interpreter is a predicate of four
arguments called, surprisingly, solve. The first of these arguments is the
goal to be solved. On successfully solving the goal, exshell binds the
second argument to the (accumulated) confidence in the goal as computed
from the knowledge base. The third argument is the rule stack, used in
responding to why queries, and the fourth is the cutoff threshold for the
certainty factor algebra. This allows pruning of the search space if the
confidence falls below a specified threshold.

In attempting to satisfy a goal, G, solve first tries to match G with any
facts that it already has obtained from the user. We represent known facts
using the two-parameter known(A, CF) predicate. For example,
known(car_starts, 85) indicates that the user has already told us
that the car starts, with a confidence of 85. If the goal is unknown, solve
attempts to solve the goal using its knowledge base. It handles the negation
of a goal by solving the goal and multiplying the confidence in that goal by
–1. It solves conjunctive goals in left-to-right order. If G is a positive literal,
solve tries any rule whose head matches G. If this fails, solve queries the
user. On obtaining the user’s confidence in a goal, solve asserts this
information to the database using a known predicate.

% Case 1: truth value of goal is already known

solve(Goal, CF, _, Threshold) :

 known(Goal, CF), !,

 above_threshold(CF, Threshold).

 Chapter 6 Three Meta-Interpreters 75

% Case 2: negated goal

solve(not(Goal), CF, Rules, Threshold) :-!,
 invert_threshold(Threshold, New_threshold),

 solve(Goal, CF_goal, Rules, New_threshold),
 negate_cf(CF_goal, CF).

% Case 3: conjunctive goals
solve((Goal_1,Goal_2), CF, Rules, Threshold) :- !,

 solve(Goal_1, CF_1, Rules, Threshold),

 above_threshold(CF_1, Threshold),
 solve(Goal_2, CF_2, Rules, Threshold),

 above_threshold(CF_2, Threshold),
 and_cf(CF_1, CF_2, CF).

% Case 4: back chain on a rule in knowledge base

solve(Goal, CF, Rules, Threshold) :-
 rule((Goal :- (Premise)), CF_rule),

 solve(Premise, CF_premise, [rule((Goal :-
 Premise), CF_rule)|Rules], Threshold),

 rule_cf(CF_rule, CF_premise, CF),
 above_threshold(CF, Threshold).

% Case 5: fact assertion in knowledge base

solve(Goal, CF, _, Threshold) :-
 rule(Goal, CF),

 above_threshold(CF, Threshold).
% Case 6: ask user

solve(Goal, CF, Rules, Threshold) :-

 askable(Goal),
 askuser(Goal, CF, Rules), !,

 assert(known(Goal, CF)),
 above_threshold(CF, Threshold).

We start a consultation using a two-argument version of solve. The first
argument is the top-level goal in the knowledge base, and the second is a
variable that will be bound to the confidence in the goal’s truth as inferred
from the knowledge base. solve/2 (solve with arity of 2) prints a set
of instructions to the user, calls retractall(known(_,_)) to clean
up any residual information from previous uses of exshell, and calls
solve/4 initialized with appropriate values:

solve(Goal, CF) :-

 print_instructions,

 retractall(known(_, _)),

 solve(Goal, CF, [], 20).

print_instructions gives allowable responses to an exshell query:
 print_instructions :- nl,
 write(’Response must be either:’), nl,

 write(’Confidence in truth of query.’), nl,

76 Part II: Programming in Prolog

 write(’A number between –100 and 100.’), nl,

 write(’why.’), nl,

 write(’how(X), where X is a goal’), nl.

The next set of predicates computes certainty factors. Again, exshell
uses a form of the Stanford certainty factor algebra. Briefly, the certainty
factor of the and of two goals is the minimum of the certainty factors of
the individual goals; the certainty factor of the negation of a fact is –1 times
the certainty of that fact. Confidence in a fact concluded using a rule equals
the certainty of the premise multiplied by the certainty factor in the rule.
above_threshold determines whether the value of a certainty factor
is too low given a particular threshold. exshell uses the
threshold value to prune a goal if its certainty gets too low.

Note that we define above_threshold separately for negative and
positive values of the threshold. A positive threshold enables us to
prune if the goal’s confidence is less than threshold. However, a
negative threshold indicates that we are trying to prove a goal false.
Thus for negative goals, we prune search if the value of the goal’s
confidence is greater than the threshold. invert_threshold is
called to multiply threshold by –1.

and_cf(A, B, A) :- A = < B.

and_cf(A, B, B) :- B < A.

negate_cf(CF, Negated_CF) :-

 Negated_CF is - 1 * CF.

rule_cf(CF_rule, CF_premise,CF) :-

 CF is (CF_rule * CF_premise/100).

above_threshold(CF, T) :-

 T > = 0, CF >= T.

above_threshold(CF, T) :-

 T < 0, CF =< T.

invert_threshold(Threshold, New_threshold) :-

 New_threshold is –1 * Threshold.

askuser writes out a query and reads the user’s Answer; the respond
predicates take the appropriate action for each user input.

askuser(Goal, CF, Rules) :-

 nl, write(’User query:’),

 write(Goal), nl, write(’?’),

 read(Answer),

 respond(Answer, Goal, CF, Rules).

The user can respond to this query with a CF between 100 and –100, for
confidence in the goal’s truth, why to ask why the question was asked, or
how(X) to inquire how result X was established. The response to why is
the rule currently on top of the rule stack. As with our implementation of
Prolog in Prolog in Section 6.1, successive why queries will pop back up
the rule stack, enabling the user to reconstruct the entire line of reasoning.
If the user answer matches how(X), respond calls build_proof to

 Chapter 6 Three Meta-Interpreters 77

build a proof tree for X and write_proof to print that proof in a
readable form. There is a “catchall” respond for unknown input values.

% Case 1: user enters a valid confidence factor

respond(CF, _, CF, _) :-

 number(CF),

 CF =< 100, CF >= –100.

% Case 2: user enters a why query

respond(why, Goal, CF, [Rule | Rules]) :-

 write_rule(Rule),

 askuser(Goal, CF, Rules).

respond(why, Goal, CF, []) :-

 write(’Back to top of rule stack.’),

 askuser(Goal, CF, []).

% Case 3: user enters a how query. Build/print proof

respond(how(X), Goal, CF, Rules) :-

 build_proof(X, CF_X, Proof), !,

 write(X), write(’concluded with certainty‘),

 write(CF_X), nl, nl,

 write(’The proof is ‘), nl, nl,

 write_proof(Proof, 0), nl, nl,

 askuser(Goal, CF, Rules).

% User enters how query, could not build proof

respond(how(X), Goal, CF, Rules) :-

 write(’The truth of ‘), write(X), nl,

 write(’is not yet known.’), nl,

 askuser(Goal, CF, Rules).

% Case 4: User presents unrecognized input

 respond(_, Goal, CF, Rules) :-

 write(’Unrecognized response.’), nl,

 askuser(Goal, CF, Rules).

build_proof is parallel to solve/4, but build_proof does not
ask the user for unknowns, as these were already saved as part of the case-
specific data. build_proof constructs a proof tree as it proves the goal.

build_proof(Goal, CF, (Goal, CF :- given)) :-

 known(Goal, CF), !.

build_proof(not Goal, CF, not Proof) :- !,

 build_proof(Goal, CF_goal, Proof),

 negate_cf(CF_goal, CF).

build_proof((Goal_1, Goal_2), CF,
 (Proof_1, Proof_2)) :- !,

 build_proof(Goal_1, CF_1, Proof_1),

 build_proof(Goal_2, CF_2, Proof_2),

 and_cf(CF_1, CF_2, CF).

78 Part II: Programming in Prolog

build_proof(Goal, CF, (Goal, CF :- Proof)) :-

 rule((Goal :- Premise), CF_rule),

 build_proof(Premise, CF_premise, Proof),

 rule_cf(CF_rule, CF_premise, CF).

build_proof(Goal, CF, (Goal, CF :- fact)) :-

 rule(Goal, CF).

The final predicates create a user interface. The interface requires the bulk
of the code! First, we define a predicate write_rule:

write_rule(rule((Goal :- (Premise)), CF)) :-

 write(Goal), write(’:-’), nl,

 write_premise(Premise), nl,

 write(’CF = ‘), write(CF), nl.

write_rule(rule(Goal, CF)) :-

 write(Goal), nl, write(’CF = ‘), write(CF), nl.

write_premise writes the conjuncts of a rule premise:
write_premise((Premise_1, Premise_2)) :- !,

 write_premise(Premise_1),

 write_premise(Premise_2).

write_premise(not Premise) :- !,

 write(’’), write(not), write(’’),

 write(Premise), nl.

 write_premise(Premise) :-

 write(’’), write(Premise), nl.

write_proof prints proof, using indents to show the tree’s structure:
write_proof((Goal, CF :- given), Level) :-

 indent(Level), write(Goal), write(’ CF= ‘),

 write(CF),write(’ given by the user’), nl, !.

write_proof((Goal, CF :- fact), Level) :-

 indent(Level), write(Goal), write(’ CF = ‘),

 write(CF),

 write(’ was a fact of knowledge base’), nl, !.

write_proof((Goal, CF :- Proof), Level) :-

 indent(Level), write(Goal), write(’ CF = ‘),

 write(CF), write(’ :-’), nl, New_level is
 Level + 1,write_proof(Proof,New_level), !.
write_proof(not Proof, Level) :-
 indent(Level), write((not)), nl,

 New_level is Level + 1,

 write_proof(Proof, New_level), !.

write_proof((Proof_1, Proof_2),Level) :-

 write_proof(Proof_1, Level),

 write_proof(Proof_2, Level), !.

indent(0).

 Chapter 6 Three Meta-Interpreters 79

indent(l) :-
 write(’’), l_new is l – 1, indent(l_new).

As an illustration of the behavior of exshell, consider the following
sample knowledge base for diagnosing car problems. The top-level goal is
fix/1. The knowledge base decomposes the problem solution into finding
the bad_system, finding the bad_component within that system,
and finally linking the diagnosis to Advice for its solution. Note that the
knowledge base is incomplete; there are sets of symptoms that it cannot
diagnose. In this case, exshell simply fails. Extending the knowledge
base to some of these cases and adding a rule that succeeds if all other rules
fail are interesting challenges and left as exercises. The following set of
rules is segmented to show reasoning on each level of the search tree
presented in Figure 6.1. The top segment, rule((fix(Advice), is at
the root of the tree:

rule((fix(Advice) :- % Top-level query

 (bad_component(X), fix(X,Advice))), 100).

rule((bad_component(starter) :-

 (bad_system(starter_system),
 lights(come_on))), 50).

rule((bad_component(battery) :-

 (bad_system(starter_system),
 not lights(come_on))), 90).

rule((bad_component(timing) :-

 (bad_system(ignition_system),
 not tuned_recently)), 80).

rule((bad_component(plugs) :-

 (bad_system(ignition_system),
 plugs(dirty))), 90).
rule((bad_component(ignition_wires) :-

 (bad_system(ignition_system),
 not plugs(dirty), tuned_recently)), 80).
rule((bad_system(starter_system) :-

 (not car_starts, not turns_over)), 90).

rule((bad_system(ignition_system) :-

 (not car_starts, turns_over, gas_in_carb)),80).

rule((bad_system(ignition_system) :-

 (runs(rough), gas_in_carb)), 80).

 rule((bad_system(ignition_system) :-

 (car_starts, runs(dies), gas_in_carb)), 60).

rule(fix(starter, ‘replace starter’), 100).

rule(fix(battery, ‘replace/recharge battery’), 100).

rule(fix(timing, ‘get the timing adjusted’), 100).

rule(fix(plugs, ‘replace spark plugs’), 100).

rule(fix(ignition_wires, ‘check ignition’),100).

 askable(car_starts). % May ask user about goal

80 Part II: Programming in Prolog

askable(turns_over).

askable(lights(_)).

askable(runs(_)).

askable(gas_in_carb).

askable(tuned_recently).

askable(plugs(_)).

Next we demonstrate, exshell using this knowledge base. Figure 6.1
presents the trace and the search space: solid lines are searched, dotted
lines are not searched, and bold lines indicate the solution.

?- solve(fix(X), CF).

Response must be either:
 A confidence in the truth of the query.
 This is a number between –100 and 100.
 why.
 how(X), where X is a goal

User query:car_starts

? –100.

User query:turns_over

? 85.

User query:gas_in_carb

? 75.

User query:tuned_recently

? –90.
 X = ‘get the timing adjusted’ CF = 48.0

We now run the problem again using how and why queries. Compare the
responses with the corresponding subtrees and search paths of Figure 6.1:

?- solve(fix(X), CF).

Figure 6.1. The graph searched in an automotive diagnosis consultation;
dashed lines are branches not examined, bold lines indicate the solution.

 Chapter 6 Three Meta-Interpreters 81

Response must be either:
 A confidence in the truth of the query.
 This is a number between –100 and 100.
 why.
 how(X), where X is a goal
User query:car_starts

? –100.
User query:turns_over
? why.
bad_system(starter_system):-
 not car_starts
 not turns_over
 CF = 90
User query:turns_over

? why.

bad_component(starter):-
 bad_system(starter_system)
 lights(come_on)
 CF = 50
User query:turns_over

? why.

fix(_0):-
 bad_component(starter)
 fix(starter,_0)
 CF = 100
User query:turns_over

? why.

Back to top of rule stack.
User query:turns_over

? 85.

User query:gas_in_carb

? 75.
User query:tuned_recently

? why.

bad_component(timing):-
 bad_system(ignition_system)
 not tuned_recently
 CF = 80

User query:tuned_recently

? how(bad_system(ignition_system)).

bad_system(ignition_system) was concluded with
 certainty 60.0
The proof is
bad_system(ignition_system) CF= 60.0 :-
 not car_starts CF = –100 was given by the user
 turns_over CF = 85 was given by the user
 gas_in_carb CF = 75 was given by the user

User query:tuned_recently

? –90.

X = ‘get the timing adjusted’ CF = 48.0

82 Part II: Programming in Prolog

 6.3 Introduction: Logic-Based Representation A Prolog Planner

 For the third meta-interpreter of Chapter 6 we present a predicate calculus-
based planning algorithm. In many ways this approach to planning is
similar to early work in planning at SRI-International (Fikes and Nilsson
1971, Fikes et al. 1972). Our planner is predicate calculus based in that the
PC representation is used to describe both the states of the planning world
(the state descriptions) as well as the rules for changing the state of the
world. In this section we create a Prolog version of that algorithm.

We represent the states of the world, including the start and goal, as
lists of predicates that have interpretations as states of the world. Thus, the
start and goal states are each described as a list of predicates:

start = [handempty, ontable(b), ontable(c), on(a,b),
 clear(c), clear(a)]

goal = [handempty, ontable(a), ontable(b), on(c,b),
 clear(a), clear(c)]

These states are seen, with a portion of the search space, in Figure 6.2.

The moves in this blocks world are described using an add and delete list.
The add and delete list describes how the list of predicates describing a
new state of the solution is created from the list describing the previous
state: some predicates are added to the state list and others are deleted. The
move predicates for state change have three arguments. First is the move
predicate name with its arguments. The second argument is the list of
preconditions: the predicates that must be true of the description of the
present state of the world for the move rule to be applied to that state.
The third argument is the list containing the add and delete predicates: the
predicates that are added to and/or deleted from the state of the world to
create the new state of the world that results from applying the move rule.
Notice how useful the ADT set operators of union, intersection, set
difference, etc., are in manipulating the preconditions and the predicates in
the add and delete list.

Four of the moves within this blocks world may be described:
move(pickup(X), [handempty, clear(X), on(X,Y)],
 [del(handempty), del(clear(X)), del(on(X,Y)),
 add(clear(Y)), add(holding(X))]).
move(pickup(X), [handempty, clear(X), ontable(X)],
 [del(handempty), del(clear(X)),

 del(ontable(X)), add(holding(X))]).

move(putdown(X), [holding(X)],
 [del(holding(X)), add(ontable(X)),
 add(clear(X)), add(handempty)]).

move(stack(X,Y), [holding(X), clear(Y)],
 [del(holding(X)), del(clear(Y)),
 add(handempty),add(on(X,Y)),add(clear(X))]).

 Chapter 6 Three Meta-Interpreters 83

Figure 6.2. The start and goal states along with the initial portion of the
search space for the blocks world planner.

Finally, we present the recursive controller for the plan generation. The
first plan predicate gives the successful termination conditions (goal state
description) for the plan when the Goal is produced. The final plan
predicate states that after exhaustive search, no plan is possible. The
recursive plan generator:

1. Searches for a move relationship.

2. Checks, using the subset operator, whether the state’s
Preconditions are met.

3. The change_state predicate produces a new
Child_state using the add and delete list.
member_stack makes sure the new state has not been visited
before.

4. The stack operator pushes the new Child_state onto
the New_move_stack.

84 Part II: Programming in Prolog

5. The stack operator pushes the original Name state onto the
New_been_stack.

6. The recursive plan call searches for the next state using the
Child_state and an updated New_move_stack and
Been_stack.

A number of supporting utilities, built on the stack and set ADTs of
Section 3.3 are included. Of course, the search being stack-based, is depth-
first with backtracking and terminates with the first path found to a goal. It
is left as an exercise to build other search strategies for planning, e.g.,
breadth-first and best-first planners.

plan(State, Goal, _, Move_stack) :-

 equal_set(State, Goal),

 write(’moves are’), nl,

 reverse_print_stack(Move_stack).

plan(State, Goal, Been_stack, Move_stack) :-

 move(Name, Preconditions, Actions),

 conditions_met(Preconditions, State),

 change_state(State, Actions, Child_state),

 not(member_stack(Child_state, Been_stack)),

 stack(Name, Been_stack, New_been_stack),

 stack(Child_state, Move_stack, New_move_stack),

 plan(Child_state, Goal, New_been_stack,
 New_move_stack), !.

plan(_, _, _) :-

 write(’No plan possible with these moves!’).

conditions_met(P, S) :-

 subset(P, S).

change_state(S, [], S).

change_state(S, [add(P) | T], S_new) :-

 change_state(S, T, S2),

 add_if_not_in_set(P, S2, S_new), !.

change_state(S, [del(P) | T], S_new) :-

 change_state(S, T, S2),

 delete_if_in_set(P, S2, S_new), !.

 reverse_print_stack(S) :-

 empty_stack(S).

 reverse_print_stack(S) :-

 stack(E, Rest, S),

 reverse_print_stack(Rest), write(E), nl.

Finally, we create a go predicate to initialize the arguments for plan, as
well as a test predicate to demonstrate an easy method to save repeated
creation of the same input string.

 Chapter 6 Three Meta-Interpreters 85

go(Start, Goal) :-

 empty_stack(Move_stack),

 empty_stack(Been_stack),

 stack(Start, Been_stack, New_been_stack),

 plan(Start, Goal, New_been_stack, Move_stack).

test :-

go(

 [handempty, ontable(b), ontable(c),
 on(a,b), clear(c), clear(a)],

 [handempty, ontable(a), ontable(b), on(c,b),
 clear(a), clear(c)]
).

In Chapter 7 we present two machine learning algorithms in Prolog, version
space search and explanation based learning.

 Exercises

 1. Extend the meta-interpreter for Prolog in Prolog (Section 6.1) to include
or and the cut.

2. Further complete the rules used with the exshell cars example in the
text. You might add several new sets of rules for the transmission, cooling
system, and brakes.

3. Create a knowledge base for a new domain for the expert system
exshell.

4. exshell currently allows the user to respond to queries by entering a
confidence in the query’s truth, a why query, or a how query. Extend the
respond predicate to allow the user to answer with y if the query is true,
n if it is false. These responses correspond to having certainty factors of
100 and -100.

5. As currently designed, if exshell cannot solve a goal using the rule base,
it fails. Extend exshell so if it cannot prove a goal using the rules, and if it
is not askable, it will call that goal as a Prolog query. Adding this option
requires changes to both the solve and build_proof predicates.

6. Add a predicate that that exshell does not just fail if it cannot find a
solution recommendation. This could be a solve predicate at the very
end of all solve predicates that prints out some message about the state
of the problem solving, perhaps by binding X, and linking it to some
Advice, and then succeeds. This an important consideration,
guaranteeing that exshell terminates gracefully.

7. Finish the code for the planner of Section 6.3. Add code for a situation
that requires a new set of moves and has new objects in the domain, such
as adding pyramids or spheres that cannot be stacked on.

8. Add appropriate predicates and ADTs to plan to implement a breadth-
first search controller for the planner of Section 6.3.

86 Part II: Programming in Prolog

9. Design a best-first search controller for the planner of Section 6.3. Add
heuristics to the search of your planning algorithm. Can you specify a
heuristic that is admissible (Luger 2009, Section 4.3)?

